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Abstract. The electron-screening acceleration of laboratory fusion reactions at astrophysical energies is an
unsolved problem of great importance to astrophysics. That effect is modeled here by considering the fusion
of hydrogen-like atoms whose electron probability density is used in Poisson’s equation in order to derive
the corresponding screened Coulomb potential energy. That way atomic excitations and deformations of
the fusing atoms can be taken into account. Those potentials are then treated semiclassically in order to
obtain the screening (accelerating) factor of the reaction. By means of the proposed model the effect of a
superstrong magnetic field on laboratory hydrogen fusion reactions is investigated here for the first time
showing that, despite the considerable increase in the cross-section of the dd reaction, the pp reaction is
still too slow to justify experimentation. The proposed model is finally applied on the H2 (d, p)H3 fusion
reaction describing satisfactorily the experimental data although some ambiguity remains regarding the
molecular nature of the deuteron target. Notably, the present method gives a sufficiently high screening
energy for hydrogen fusion reactions so that the take-away energy of the spectator nucleus can also be
taken into account.

PACS. 25.10.+s Nuclear reactions involving few-nucleon systems – 25.45.-z 2H-induced reactions

1 Introduction

At astrophysical energies of a few keV corresponding to
stellar temperatures of several millions degrees kelvin the
cross-section σ (E) of the predominant s-wave fusion re-
actions is given by

σ (E) =
S (E)
E

P (E) , (1)

where the astrophysical factor S (E) embodies all the nu-
clear effects of the reaction and for non-resonant cases is
a slowly varying function of the center-of-mass energy E.
On the other hand, the penetrability factor P (E) embod-
ies all atomic effects of the reaction and when the electron
cloud around the fusing nuclei is ignored it is given by
P (E) = exp (−2πn), where n is the Sommerfeld parame-
ter.
As the astrophysical factor varies slowly with energy

we usually replace it with a truncated Taylor series which
will be studied extensively in the present paper:

S (E) = S (0) + S′ (0)E + 0.5S′′ (0)E2 . (2)
a e-mail: theoliol@physics.auth.gr
b Correspondence address.

Any error in the zero-energy astrophysical factor S (0)
is actually an error in the corresponding reaction rate in
the stellar plasma, which in turn reflects linearly on the
energy production rate.
In the past years there have been exhaustive efforts

to extend measurements of the S (E) towards even lower
energies [1,2] in order to obtain a reliable value for S (0).
This is necessary as extrapolating higher-energy data to
zero energies introduces an inevitable numerical error.
However, at such low energies, the electron cloud that
screens the fusing nuclei enhances the fusion reaction by
lowering the Coulomb barrier. Consequently, disregarding
its presence leads to an overestimation of S (0). Unfor-
tunately, even very recent experiments [3] cannot explain
the screening enhancement which exceeds all the available
theoretical predictions as was recently admitted [4,5] .
Various authors have studied the influence of the

atomic cloud on the cross-section of low-energy nuclear
reaction. A qualitative study [6], which parametrized var-
ious atomic processes such as molecular formation, exci-
tation and ionization, yielded a fair approximation for the
possible contributions of the electronic degrees of freedom
in the nuclear collision experiment. Moreover, by assum-
ing a constant charge density around the target nucleus,
a subsequent model [7] predicted a screening shift which
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was compatible with the experimental data. However that
assumption is an oversimplification which will be amended
in the present paper. The most sophisticated approach has
been a few-body treatment [8] which established a lower
(sudden) and a higher (adiabatic) limit for the screening
energy transferred into the relative nuclear motion. Al-
though more studies followed [9,10], which also extended
the calculations to molecular fusion reactions [11], despite
their mathematical rigor they could not explain the dis-
crepancy between experimental and theoretical screening
energies.
In this work there is presented a mean-field model for

the study of screened nuclear reactions at astrophysical en-
ergies in the laboratory [12]. That model agrees well with
the available experimental data, thus enabling us to im-
prove the accuracy of the associated astrophysical factor.
Moreover, by means of the proposed model the effect of a
superstrong magnetic field on laboratory hydrogen fusion
reactions is also investigated for the first time, yielding
the associated magnetic accelerating factor. Notably, the
present method gives a sufficiently high screening energy
for hydrogen fusion reactions so that the spectator nucleus
take-away energy can also be taken into account.

2 Screened Coulomb potentials

After the pioneering work [6] that established the impor-
tance of atomic effects in low-energy nuclear reactions var-
ious authors have tried to create models that account for
the observed enhancement. A simple model [7], suggested
at an early stage, assumed that the electronic charge den-
sity around the target nucleus is constant, thus predict-
ing for the nucleus-atom reaction between the atomic tar-
get Z1e and the projectile Z2e a screening energy Ue =
(3/2)Z1Z2e

2a−1. In order to take into account the depen-
dence of the screening radius on the charge state of the
reaction participants, that model used a screening radius
taken from scattering experiments [13] so that

a = 0.8853a0

(
Z

2/3
1 + Z

2/3
2

)−1/2

, (3)

where a0 the Bohr radius. Although that screening energy
is larger than the one predicted by the simple formula [6]
Ue = Z1Z2e

2 (a0/Z1)
−1 it has some very obvious defects.

The assumption that the charge density is constant leads
to an unnaturally sharp cut-off at a distance r = a from
the center of the target nuclei, which is not born out ei-
ther by theory or experiment. Moreover, atomic excita-
tions and deformations of the target atom are totally dis-
regarded. On the other hand, normalizing the charge dis-
tribution so that the total charge is −Z1e gives a charge
density

ρ0 = −3
4
Z1e

πa3
. (4)

In order to assess the validity of that density we can con-
sider the hydrogen-like atom Z1e which will also be used in
this section . The charge density at the center of the cloud
of such an atom (when the electron is in its ground state) is

ρg.s.
0 = −e (Z1/a0)

3
/π. It is obvious that for Z1 = Z2 = 1

we obtain ρ0 � − (
e/a3

0

)
and ρg.s.

0 = − (
e/a3

0

)
/π, that is

the simplified model in question overestimates the central
density by a factor of π.
Consequently it is obvious that if low-energy nuclear

reactions are to be treated by means of a mean-field po-
tential a more sophisticated treatment is necessary.
As a first step we consider a more plausible charge

distribution:

ρ (r) = ρ0

(
1− r2

a2

)
, (5)

which takes into account the depletion of charge with re-
spect to distance from the center. The radius a is the
screening radius given by eq. (3) and the charge density
ρ0 at the center of the cloud can be found by means of the
normalization condition:∫ a

0

ρ (r) 4πr4dr = −Z1e . (6)

This integral yields a central value of

ρ0 = −15
8
Z1e

πa3
. (7)

Note that for a collision Z1 = Z2 = 1 we have a central
charge density ρ0 = 7.68

(
e/a3

0

)
/π which gives an even

larger core density than the constant density assumption.
An alternative approach would be to consider the value
ρ0 equal to the corresponding hydrogen-like one and then
calculate the screening radius using eq. (6). The latter
treatment gives a screening radius

a =
(
15
8Z2

1π

)1/3

a0 , (8)

which is independent of the charge of the projectile. For
hydrogen isotopes eq. (8) gives a radius of a = 0.842a0.
We can calculate the electrostatic energy by solving

the equation of Poisson for the above charge distribution
with the appropriate boundary conditions, so that

Φ (r) = −15
12
Z1e

a

[
3
2
−

( r
a

)2

+
3
10

( r
a

)4
]
. (9)

Whenever a bare nucleus Z2e impinges on the target nu-
clei surrounded by the electron cloud of eq. (5) the total
interaction potential in the atom-nucleus reaction channel
is

V (r) =
Z1Z2e

2

r
− 15
12
Z1Z2e

2

a

[
3
2
−

( r
a

)2

+
3
10

( r
a

)4
]
.

(10)
Although the above potential energy is more plausible
than the constant charge density one, a more reliable
charge distribution should be considered which could ac-
count for various other atomic effects as well as for the
atom-atom reaction channel.
Let us consider a hydrogen-like atom with atomic num-

ber Z1. When the wave function of the electron is given
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by Ψnl (r, θ) then the charge density around the point-like
nucleus is

ρ (r, θ) = −e |Ψnl (r, θ)|2 (11)

by which it is obvious that both the previous screening
model and that of ref. [7] are imperfect. If we solve the
equation of Poisson for hydrogen atoms (or hydrogen-like
ions) whose electron is in its ground (1s) state we obtain

Φ00 (r) = −e
r
+
e

r

(
1 +

r

2r0

)
exp (−r/r0) , (12)

where the screening radius is

r0 =
a0

2Z1
. (13)

If a positive projectile Z2e interacts with the above
screened nucleus then the total potential energy is

V00 (r) =
Z1Z2e

2

r
− Z2e

2

r
+
Z2e

2

r

(
1 +

r

2r0

)
exp

(
− r

r0

)
.

(14)
On the other hand, if we assume that the electron is

in an excited state (2s) then the potential energy is found
to be

V10 (r) =
Z1Z2e

2

r
− Z2e

2

r
+
Z2e

2

r
·

·
(
1 +

3
8
r

r0
+

r2

16r20
+

r3

64r30

)
exp

(
− r

2r0

)
. (15)

It should be emphasized that in the derivation of the
above potentials we have assumed an unperturbed wave
function of the target nuclei, throughout the tunnelling
process. In fact at astrophysical energies the electron cloud
responds rapidly and by the time tunneling begins the
nuclei are so close that the wave function is actually that
of a hydrogen-like atom with charge Z∗

1 = (Z1 + Z2) and
a screening radius r∗0 = a0/2Z∗

1

3 Nuclear reactions at astrophysical energies

At astrophysical energies reactions between light nuclei
take place via s-interactions, thus enabling us to investi-
gate them by means of the WKB.
If we assume that a bare nucleus Z2e collides at very

low energy E with a screened nucleus whose electron is in
its ground state then the tunneling probability according
to the WKB method is

P (E) = exp

[
−2

√
2µ
h̄

∫ rc(E)

R

√
V00 (r)− Edr

]
. (16)

We can assume that the lower limit of the WKB integral is
given in terms of the mass number A of the reacting nuclei:
R = 1.4

(
A

1/3
1 +A

1/3
2

)
. For most practical purposes this

lower bound is set equal to zero as all the nuclear effects of
the fusion reaction are included in the cross-section factor.

The classical turning point can be obtained by equat-
ing the relative collision energy E with the potential en-
ergy of the interaction. The collision energy is set equal
to the Gamow peak of the corresponding reaction in the
plasma so that

V00 (rc) = 1.220 ·
(
Z2

1Z
2
2AT

2
6

)1/3
keV , (17)

where A the reduced mass number and T6 the temper-
ature in million degrees kelvin. For a wide range of light
nuclei we have performed extensive numerical solutions for
eq. (17) as well as numerical integrations of eq. (16). At
astrophysical energies, just as is the case with the Debye-
Hückel model in plasma conditions [14], the results indi-
cate that throughout the potential barrier the potential
energy V00 (r) of eq. (14) can be safely replaced by the
much simpler formula:

V00 (r) � Z1Z2e
2

r
− Z∗

1Z2e
2

a0
. (18)

Therefore the WKB penetration factor can be written as

P (E) = exp

[
−2

√
2µ
h̄

×
∫ rc(E)

R

√
Z1Z2e2

r
− Z∗

1Z2e2

a0
− Edr

]
. (19)

The equation for the classical turning point is modified
accordingly:

Z1Z2e
2

rc
= 1.220 · (Z2

1Z
2
2AT

2
6

)1/3
keV , (20)

where we have ignored the screening shift given by

Ue =
Z∗

1Z2e
2

a0
. (21)

It is now obvious that the relative energy of the reaction
has been increased by Ue. In that case the penetration
factor can be easily found to be [10]:

f1s (E) � exp
[
πn (E)

Ue

E

]
, (22)

where the subscripts indicate the excitation state of the
target atom. If we follow the same methodology for the 2s
state we obtain

f2s (E) � exp
[
πn (E)

Ue

4E

]
. (23)

The much simpler potential model of eq. (10) gives a
screening factor:

f0 (E) � exp
[
πn (E)

Ũe

E

]
(24)

with an energy shift of

Ũe =
15
8
Z1Z2e

2

a
, (25)

where a is given either by eq. (3) or eq. (8).
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4 Magnetically catalyzed screening

By now it is obvious that any shift Ue � E of the inter-
action potential energy V (r)

V (r) =
Z1Z2e

2

r
− Ue (26)

accelerates the fusion cross-section of hydrogen isotopes
by a factor f1s (E) given by eq. (22). That observation
will prove very useful in the study of the effects of a su-
perstrong magnetic field on laboratory hydrogen fusion
reactions which follows.
As a matter of fact under such extreme conditions

the electron-screening cloud is deformed in the sense that
it becomes compressed perpendicular and parallel to the
magnetic field so that the screening potential energy for
the strongly magnetized hydrogen atom is [15]

Ue (ρ, z;α) =
e2

ρ̂

1√
2π

∫ ∞

0

exp
[
− 1

2

(
ρ2

1+u +
z2

α2+u

)]
(1 + u)

√
α2 + u

du ,

(27)
where ρ, z are the coordinates in a cylindrical frame of ref-
erence whose origin coincides with the point-like nucleus
of the hydrogen atom.
The natural length unit in the above formula is of

course the cyclotron radius so that ρ = ρ/ρ̂, z = z/ρ̂,
and α is a parameter which depends on the magnetic field
and is determined by the variational method. The above
formula was shown to be reliable for very strong fields
whereas it becomes inaccurate below the threshold of the
intense magnetic field regime given by

BIMF = 4.7× 109G . (28)

In ref. [15] potential (27) was applied at zero relative en-
ergies in order to obtain the mean-life times of hydrogen
isotopes in neutron star surfaces. However, a more recent
work [16] used that potential in a problem where the rel-
ative energies were of the order of keV showing that for
energies E > 0.5 keV and fields of the order of B12 = 0.047
(B12 being the field measured in 1012G) the classical turn-
ing point is so deep inside the cloud that the screening shift
can be considered constant and equal to the value of the
potential at the center of the cloud given in ref. [15]:

Ue (0, 0;α) =
e2

ρ̂

2√
2π

ln
(
α+

√
α2 − 1)√

α2 − 1 . (29)

In the present work that approximation has been tested
for various other fields and energies. The results show that
for fields as high as B12 = 4.7 and interaction energies
E > 0.5 keV the screening effect is independent of the
angle at which the projectile enters the electron cloud and
can be considered equal to eq. (29).
Therefore if the target hydrogen nuclei are in such

a magnetic field the reaction is going to be accelerated
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Fig. 1. The screening (acceleration) factor f1s with respect to
the relative interaction energy of two fusing protons for various
superstrong magnetic fields (in units of 1012G).
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Fig. 2. The screening (acceleration) factor f1s with respect
to the relative interaction energy of two fusing deuterons for
various superstrong magnetic fields (in units of 1012G).

by a factor

f1s (E) � exp
[
πn (E)

Ue (0, 0;α)
E

]
. (30)

Figures 1 and 2 depict the acceleration of the pp and dd
reactions, respectively, for various magnetic fields and in-
teraction energies. Especially for the pp reaction it is ob-
vious that even in such a strong field the cross-section is
still significantly small. Namely, as the corresponding zero
energy astrophysical factor is Spp (0) � 4 × 10−22 keV-b,
the screening effect in a superstrong field B12 = 4.7 can
only increase Spp (0) by roughly one order of magnitude
compared to the unmagnetized case. If we take into ac-
count that the most powerful magnet currently available
does not exceed 106 G, it is obvious that any hope of mag-
netically catalizing the pp reaction in the laboratory (in
the near future) is futile.
The dd reaction, on the other hand, can be signifi-

cantly affected by such a magnetic field as it is already
much faster than the pp one. At very low energies the in-
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crease can be as high as two orders of magnitude compared
to the unmagnetized case.

5 The astrophysical factor of dd nuclear
reactions.

Despite the fact that the reactions H2 (d,p)H3,
H2 (d,n)He3 have been investigated since the early days
of accelerators [17–19], the effect of screening on the asso-
ciated astrophysical S (E) , which will eventually be used
in theoretical calculations, is still under investigation. In
the discussion that follows we will show that our model is
compatible with the experimental data of that reaction.
The appropriate treatment of a low-energy experiment

should take into account screening effects in order to cal-
culate the respective values of S (E) . As a matter of fact
once a screening model and the associated screening en-
ergy Ue are adopted, the corrected bare-nucleus astrophys-
ical factor of the experiment is actually given by

Sb (E) = Eσ (E) exp (2πn) exp
(
−πnUe

E

)
. (31)

Then eq. (2) is fitted to the data corrected through eq. (31)
in order to obtain the zero-energy coefficient S (0) .
Any effort to extrapolate from higher-energy data or

fit all the uncorrected data with formula (2) is bound to
induce errors.
There are three different ways to analyze low-energy

fusion data [3] which must of course be consistent with
each other. We will apply those methods on the available
data [20] for dd reactions (E > 2 keV) and compare them
with the analytic model proposed in the present paper.
First we note that for energies E > 20 keV any screen-
ing correction is meaningless since the exponential term
of eq. (31) is very close to unity at such high energies.
Therefore we can obtain the asymptotic behavior of the
astrophysical factor by using the available high-precision
experimental data [21] for higher energies which yielded

Sb (E) = 55.49 (0.46) + 0.094 (0.0054)E . (32)

We can now reasonably assume that this should be a
fair approximation of the bare-nucleus astrophysical fac-
tor provided its use consistently describes the low-energy
experimental data. In fact the screened value of S (E) will
now be given by

S (E) = (55.49 + 0.094E) exp
(
πn

Uas
e

E

)
, (33)

where the screening energy Uas
e is determined by fitting

eq. (33) to the uncorrected data of ref. [20], so that Uas
e =

0.019 (0.003) keV with χ2 = 0.028.
The second method which will corroborate the valid-

ity of the proposed models entails fitting all four param-
eters S (0) , S′ (0) , S′′ (0) , Ue simultaneously to the un-
corrected experimental data. Thus we obtain a screening
energy of Uall

e = 0.017 (0.003) keV and a bare nucleus
astrophysical factor:
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Fig. 3. The H2 (d, p)H3 astrophysical factor S (E) measured
in keV-b with respect to the center-of-mass interaction en-
ergy Ecm (keV). The data (squares) are taken from ref. [20].
The solid curve represents eq. (33), which makes use of the
asymptotic form given in ref. [21]. The dashed curve represents
eq. (34) where all four parameters S (0) , S′ (0) , S′′ (0) , Ue are
fitted simultaneously. The dotted curve is obtained by adopt-
ing as a screening energy the value given by eq. (25), while the
dash-dotted curve stands for the astrophysical factor obtained
by using eq. (21).

Sb (E)=54.54 (1.39)+0.608 (0.265)E−0.026 (0.026) (34)
with χ2 = 0.011. Obviously, the two previous approaches
give results which are compatible with each other as ex-
pected. Figure 3 shows that both the previous fits provide
a satisfactory description of the screening effect.
The third method is a straightforward application of

the theoretical models derived in the present paper. How-
ever, in order to apply those models on the experimen-
tal data we have to take into account that the data refer
to a molecular target while our models refer to atomic
ones. Hence, we have to allow for the energy which will
be carried away by the spectator nuclei plus the reduc-
tion due to the molecular binding energy. Although this
assumption has been argued against [11], the actual en-
ergy reduction for a deuteron molecular target has been
calculated [23] by a Coulomb explosion process to be of
the order of 44 eV. Therefore modifying our models for
a molecular deuteron target we derive a screening energy
Ue = 0.010 keV (eq. (21)) and Ũe = 0.016 keV (eq. (25))
which are in reasonably good agreement with the experi-
mentally obtained values. We can now fit the formula

S (E)=
[
S (0)+S′ (0)E+0.5S′′ (0)E2

]
exp

(
πn

Ue

E

)
(35)

by using the screening shift of our models. The results are
as follows:

Ue = 0.010,

Sb(E)=57.3 (0.41)+0.160 (0.125)E−0.0056 (0.002)E2

(36)
with χ2 = 0.013 and

Ũe = 0.016,

Sb (E)=54.93 (0.38)+0.537 (0.1149)E−0.0225 (0.007)E2

(37)
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with χ2 = 0.011.
Although our models are fairly compatible with the ex-

periment there is an inevitable degree of uncertainty in the
associated astrophysical factors due to the actual amount
of energy that is carried away by the spectator nuclei of
the molecular target. In any case the models proposed here
turn out to provide a simple and effective way of describ-
ing fusion reactions between hydrogen-like atoms.

6 Conclusions

This work proposes a simple and efficient model for the
study of the screening enhancing effect on low-energy nu-
clear fusion reactions. In that model, the fusing atoms are
considered hydrogen-like atoms whose electron probability
density is used in Poisson’s equation in order to derive the
corresponding screened Coulomb potential energy. This
way atomic excitations and deformations of the reaction
participants can be taken into account. The derived mean-
field potentials are then treated semiclassically, by means
of the WKB, in order to derive the screening enhance-
ment factor which is shown to be compatible with the
experimentally obtained one for the H2 (d,p)H3 reaction,
although some ambiguity remains regarding the molecular
nature of the deuteron target. Moreover, by means of the
proposed model the effect of a superstrong magnetic field
on laboratory hydrogen fusion reactions is investigated for
the first time showing that despite the remarkable increase
in the cross-section of the dd reaction, the pp reaction is
still too slow to justify experimentation.
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